Abstract
Abstract Researches on plasma-facing materials/components (PFMs/PFCs) have become a focus in magnetic confinement fusion studies, particularly for advanced tokamak operation scenarios. Similarly, spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions, making studies of their thermal and ablation resistance critical. Recently, a low-cost, low-energy-storage for superconducting magnets, and compact linear device, HIT-PSI, has been designed and constructed at Harbin Institute of Technology (HIT) to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer (SOL) and divertor regions, as well as spacecraft surface materials. The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy. As magnetic field rises to 2 T, the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×1021 m−3 at a distance of 25 cm from the source with electron temperature surpassing 4 eV, where the particle flux reaches 1024 m−2s−1, and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m2. Combined with probe and emission spectroscopy data, the transport characteristics of the argon plasma beam are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.