Abstract

Transition regime convection heat transfer coefficients of zinc oxide/ethylene glycol–water (ZnO/EG-W) nanofluid in a circular pipe were investigated experimentally where the mass fraction of nanoparticles in the base fluid is from 0 to 5 wt.% and at operating temperatures. Different ZnO/EG-W mass concentration nanofluids were prepared, and the physical and thermal transport properties including density, thermal conductivity, specific heat capacity and viscosity were measured and the results were compared with the base fluid. It was found that the nanofluid has maximum of 30% higher heat transfer coefficient compared to base fluid at mass fraction of 2.5 wt.%, whereas at higher values of the nanoparticles' mass concentration of 5 wt.%, the heat transfer coefficient decreases. There is an optimal value of the concentration for the nanoparticles to have the maximal enhancement of the heat transfer. The measurements also showed that the pressure drop of nanofluid was higher than that of the base fluid in a turbulent flow regime. However, there was no significant increase in pressure drop at laminar flow. Our results demonstrated that the ZnO/EG-W nanofluid might be a promising alternative for conventional coolants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.