Abstract
Supercritical water gasification technology is widely used in the conversion of organic waste because of its clean and efficient characteristics. As a high polymer, plastic may undergo complex processes such as depolymerization and gasification in supercritical water, and its optimal operating conditions have rarely been reported. In this paper, the experiments of high impact polystyrene (HIPS) plastic supercritical water gasification were carried out at a reaction temperature of 500–800 °C, a reaction time of 1–60min, a feed concentration of 2–10 wt% and a reaction pressure of 22–25 MPa. The effects of different operating conditions on gas, liquid and solid products were studied. It was found that the novel phenomenon that carbon microspheres with uniform specifications on the surface of solid residue. Mechanism analysis results showed the plastic depolymerized to form the oligomer, monomer and its derivatives, which were subsequently cracked and gasified, or polycondensed into a nuclear to form carbon microspheres at a certain critical concentration of nucleation. With the gasification reaction proceeds, carbon microspheres with a smoother surface and a more uniform size are formed with a diameter of about 0.8–1.5 μm. The experimental results showed that increasing the reaction temperature, time and reducing the feedstock concentration significantly improved the gasification performance of the plastic, but the change of reaction pressure had little effect on the gasification performance. Finally, it was found that under the optimal gasification reaction conditions, the plastic carbon conversion rate reached 94.48 wt%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.