Abstract
Reverse-flow combustor is widely used for small engines to overcome high speed shaft whirling problem and to provide a low frontal area. An experimental investigation was carried out to research the flow field characteristics of a reverse-flow combustor in this paper. Different aerodynamic conditions were studied using PIV to reveal the characteristics of both the nonreacting and reacting flow fields. The structure of the nonreacting flow field in the central section shows similarity as the total pressure loss coefficient increases. The penetrating depth, jet angle, recirculation zone position, and the flow streamlines are similar, while the velocity value of the flow field increases. The structure of the reacting flow field on the central section is different from that of nonreacting flow field, but the variation trend of the reacting flow field under different pressure loss coefficient is similar to that of the nonreacting flow field. By examining the nonreacting and reacting flow fields under the same total pressure loss conditions, marked differences were observed in the primary zone close to the swirler outlet. The relative motion between fuel injection, airflow, and combustion affects the flow field in this zone. The velocity with combustion is faster than that of the nonreacting flow because of the increased temperature and heat release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.