Abstract

A passive reactor for tritium oxidation at room temperature has been widely studied in nuclear engineering especially for a detritiation system (DS) of a tritium process facility taking possible extraordinary situation severely into consideration. We have focused on bacterial oxidation of tritium by hydrogen-oxidizing bacteria in natural soil to realize the passive oxidation reactor. The purpose of this study was to examine the feasibility of a bioreactor with hydrogen-oxidizing bacteria in soil from a point of view of engineering. The efficiency of the bioreactor was evaluated by kinetics. The bioreactor packed with natural soil shows a relative high conversion rate of tritium under the saturated moisture condition at room temperature, which is obviously superior to that of a Pt/Al2O3 catalyst generally used for tritium oxidation in the existing tritium handling facilities. The order of reaction for tritium oxidation with soil was the pseudo-first order as assessed with Michaelis-Menten kinetics model. Our engineering suggestion to increase the reaction rate is the intentional addition of hydrogen at a small concentration in the feed gas on condition that the oxidation of tritium with soil is expressed by the Michaelis-Menten kinetics model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.