Abstract

Phenomenological experiments were performed on a 2-dimensional scaled model of the two-region designed pebble-bed high-temperature gas-cooled reactor core consisting of the distinct fuel pebble region and graphite pebble region. Issues with respect to the feasibility of the two-region design, including the establishment of the two-region arrangement, the mixing zone between the two regions, and the stagnant zone existence, were investigated. Three equilibrium conditions were proposed to evaluate the stable tworegion arrangement formation. The general characteristics of the flow of the pebble bed were analyzed on basis of the observed phenomenon. It was found that a stable two-region arrangement was formed under the experimental conditions: the pebbles' motion was to some extent random but also confined by the neighbors of pebbles so that the mixing zone is constrained to a reasonable size. Guide plates utilized to improve mixing are proved to be effective without noticeable effect on the two-region arrangement features. Stagnant zones were observed under the experimental conditions and they were expected to be avoided by improving the design of the experimental setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.