Abstract

Two decades have been going on since nanofluid was introduced with the hope that it could enhance the thermal performances of heat transfer applications. Nevertheless, yet, there are no standards for nanofluid preparation process (sonicator type, power, amplitude, duration) to achieve stable and well-dispersed nanofluid. The aim of this research is to analyze the consequence of ultrasonication duration on colloidal dispersion and thermophysical properties of 0.5vol.% of Al2O3–water nanofluid. A horn ultrasonic dismembrator was used for different periods from 0h to 5h for nanofluid preparation. Particle size distribution (PSD), zeta potential, and microstructure were studied to check the dispersion characteristics. Thermal conductivity, viscosity, and density of the nanofluid were analyzed for different temperatures from 10°C to 50°C. Better dispersion, higher thermal conductivity and density, and lower viscosity have been observed with the increase of sonication time. Furthermore, thermal conductivity was found to be increased but viscosity and density were decreased with the increase of temperature. The research concluded that higher ultrasonication duration is best and at least 2h of ultrasonication is needed for better performance of the nanofluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.