Abstract

Due to superior material properties of fiber reinforced composites, they are utilized in many structural fabrications. Even though many studies have been reported about various fiber reinforced composites, it is indeed to find more eco-friendly composites for modern applications. So, developing the new fiber reinforced composites and revealing its mechanical properties are vital. In this examination, the natural fiber reinforced polymer matrix composite was prepared by compression molding method. The natural fiber named as Coccinia Indica was used to fabricate the fiber reinforced composites. The impact of different fiber length on dynamic mechanical properties like loss modulus, storage modulus, and loss of weight in fiber reinforced composites was predicted using dynamic mechanical analysis and thermogravimetric analysis. The outcomes revealed that fiber length of 30 mm shows better values in storage modulus and nominal loss modulus owing to higher interfacial bonding among fiber and matrix. However, in other fiber lengths, the storage modulus depicts poor result and high loss modulus is due to inefficient stress transfer.

Highlights

  • Fiber reinforced polymer (FRP) contains a polymer matrix with high-quality fibers.[1]

  • The dynamic mechanical properties of CI fiber reinforced composites (CIFRCs) like loss modulus, storage modulus, and damping factor have been determined by utilizing dynamic mechanical analysis (DMA) studies

  • The pure polyester shows the most minimal storage modulus in all temperature range compared with the tested CIFRCs

Read more

Summary

Introduction

Fiber reinforced polymer (FRP) contains a polymer matrix with high-quality fibers.[1].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.