Abstract

An experimental investigation on the stable crack growth (SCG) behaviour in AISI 4340 using CT type specimen with a sharp slit (0.05 mm) under mode I and mixed modes (I and II) loading is presented. The slit was made in the specimen through wire cutting technique. Different combinations of loading angle ϕ and ratio of original crack length to specimen width ( a 0/ W) are examined. Data concerned with direction of initial crack extension, load–load line displacement (L–LLD) diagrams, initiation and maximum loads, range of stable crack growth, crack tip blunting, crack front geometry, fracture surfaces and their scanning electron micrographs are obtained. A noticeable blunting effect is observed prior to crack initiation. Although the crack initiates from a straight front, a considerable front tunnelling effect occurs as the crack extends. Under mixed mode, the crack extension takes place initially almost along a straight path, inclined with the main crack. The loading angle and initial crack length affect the initiation ( P i ) and maximum ( P max) loads significantly, but the ratio between P max and P i remains almost constant. The direction of initial stable crack extension due to mixed mode loading is determined throughout an elastic finite element analysis. There is a good agreement between the experimental and predicted results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.