Abstract

Braking system is one of the important systems in Automobiles. It is essential to decelerate the vehicle and stop it when essential. The temperature of the brake pad (stator) and disc (rotor) increases because of frictional force between them. Higher temperatures may lead to brake fading or failure of braking system. In the present study droplet cooling of commercially available Brake pad is analyzed with surface temperatures in the range of 80°C - 150°C. The brake pad material analyzed is a composite material with Fe2O3, BaO, CaO, SiO2, SO3 and MgO as major constituents. The percentage of the constituents are found using Scanning Electron Microscope (SEM). The brake pad is artificially heated using cartridge heater and a fixed volume of water is dropped on to the brake pad surface using a syringe pump. The characteristics of droplet on the surface of the brake pad are recorded using a High speed camera. The temperature is measured continuously using a K type thermocouple and is recorded using an online data acquisition system. The characteristic of droplet enhanced cooling is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.