Abstract

Experimental investigation performed to evaluate buckling strength of a cylindrical panel exposed to non-uniform temperature field is presented. A novel experimental set-up developed in-house is used to evaluate buckling strength of a cylindrical panel made of Aluminum. Influence of nature of non-uniform temperature variation, structural boundary conditions and panel aspect ratio on buckling strength is investigated experimentally. Experimental results reveals that effect of nature of temperature field, resulting from the location of heat source, on buckling strength is significant. It is also observed that buckling strength is less when the least stiffness area of the panel is exposed to peak temperature of a particular temperature field. Similarly, CCCC boundary constraints results in high thermal stress which lowers the buckling strength of the panel as compared to CCFC boundary constraints. Temperature-deflection plot and corresponding buckling strength evaluated experimentally are compared with those obtained using non-linear finite element analysis, taking into account the initial geometric imperfection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.