Abstract
Composite cylindrical shells are being used in submarine, underground mines, aerospace applications and other civil engineering applications. Thin cylindrical shells are more prone to fail in buckling rather than material failure. An experimental study on buckling of glass fiber reinforced plastics layered composite cylindrical shells under displacement and load controlled static axial compression are reported The experimental results are compared with general purpose finite element program (ANSYS). Limit point loads evaluated for geometric imperfection magnitudes shows an excellent agreement with experimental results which clearly indicates the confidence gained on the numerical results presented. Present study finds direct application to qualitatively investigate the influence of geometric imperfection on other advanced grid-stiffened structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.