Abstract

ABSTRACTTo investigate the blockage characteristics for dense-phase pneumatic conveying in narrow bifurcation slits, a study on the blockage boundary conditions of powders was undertaken. The results show that the solid mass flow rate for blockage increases with superficial air velocity, and the variation trend can be divided into three typical stages. Besides the relationship between the solid loading ratio and superficial air velocity for blockage in the bifurcation slit displays a “S” shape with the increase of air velocity, the solid loading ratio increases, then decreases, finally increases, and in each stage above, the relationship between the two approximately meets power function, respectively. According to the “S” shape relationship, the formula used for blockage boundary [Setia, Mallick, Wypych, and Pan (2013). Validated scale-up procedure to predict blockage condition for fluidized dense-phase pneumatic conveying systems, Particuology, 11, 657–663] was modified into piecewise function for bifurcation slits. In addition, with the increase of the bifurcation angle and conveying pressure, the superficial air velocity decreases, while the solid mass flow rate and the critical solid loading ratio increase. The research work could help understand the blockage theory of the dense-phase pneumatic conveying.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call