Abstract

Thin-ply laminated composites have recently gained increasing attention in the aerospace engineering field, due to enhanced design possibilities and positive size effects with regard to decreasing ply thickness. In this paper, the mechanical behavior of thin-ply laminate and TC21 titanium alloy hybrid joints with double-lap bolted structure under quasi-static loading was studied experimentally. X-ray computed tomography (CT) scanning and SEM microcosmic imaging at special stages of the whole loading process were used to clarify the progression of bearing damage and fastening hole deformation characteristics of laminates. A more gradual damage and failure in bearing was observed in all specimens from the stress-displacement curves. The final failure of hybrid joints is a combined mode of bolt tensile cracking and hole bearing deformation. More importantly, the common delamination of standard-ply composite laminated plates in the bearing failure plane and tensile failure plane was suppressed in thin-ply laminates, resulting in higher bearing failure strength and more damage accumulation. Therefore, the novelty of this work contributes to detailed experimental observations of the bearing failure mechanisms, which provide valuable information for developing accurate mechanism-based failure models to be used in simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call