Abstract

An ethylene-air diffusion flame was acoustically forced with a frequency of 100 Hz at four amplitudes ranging from 40% to 140%. The average bulk velocity of the fuel was 0.6 m/s. The soot distribution and velocity fields were measured by simultaneous two-dimensional laser-induced incandescence (LII) and stereo particle image velocimetry (PIV) at 20 kHz laser repetition rate. The LII signal was calibrated by pulse-to-pulse laser energy variation, and it was observed that the soot regions extended along the central axis of the flame and shrank radially under acoustic forcing compared with the steady flame. The volume fraction of soot in the acoustically forced flame decreased with increased acoustic driving. In addition, the PIV results revealed that the resident time was strongly associated with the formation of an oval-shaped soot region, which was induced by external acoustic forcing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.