Abstract

A variety of centrifugal compressors are used in various fields of industry such as aircraft, home appliances, and vehicles. Comfort and quietness are important in these uses. As a result, noise has become an important consideration in compressor design besides the conventional performance parameters such as efficiency and pressure ratio. However, compressor noise has been difficult to understand because of the lack of information. The aim of this paper is to investigate the aero-acoustic characteristics of a centrifugal compressor for the fuelcell vehicle by experiments. The existing compressor system is modified to measure the internal pressure fluctuation at the impeller inlet, the impeller outlet and the diffuser outlet. Four microphone probes are also installed to determine the external noise levels and spectra of the compressor in an airtight room according to the RPM and mass flow rate. The test results show the possibility to tell the relative noise level of a centrifugal compressor with the internal pressure data. The external microphone signals have relation to the internal pressure signals. They have similar patterns and spectra. It is a noteworthy phenomenon because it is easier and inexpensive to predict pressure behaviors than noise characteristics of centrifugal compressors. The dominant noise source is the tonal noise during normal operation. But the broadband noise component due to the turbulent flow in the compressor increases during low flow rate operation. Computational simulations are carried out to describe these phenomena and to identify noise indicators. The turbulence kinetic energy and the pressure distribution obtained from CFD results may be indicative of the relative noise intensity of the compressor. The experimental facility, instrumentation and simulation conditions are described, and the results are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.