Abstract

A limited experimental work was on multi-walled carbon nanotube (MWCNT)—water nanofluid with surfactant in the solar parabolic collector at low volume concentrations. At high-volume concentrated nanofluid, the pressure drop was more due to an increase in the viscosity of the working fluid and an increase in the nanoparticle cost; hence it is not economical. This report attempted to use Sodium Dodecyl Benzene Sulfonate (SDBS) surfactant in the low-volume concentrated MWCNT-water nanofluid to establish effective heat transfer in solar parabolic collector applications. The stable MWCNT-water nanofluid was prepared at 0.0158, 0.0238, and 0.0317 volume concentrations. The experiments were conducted from 10:00 to 16:00 at 6, 6.5 and 7 L/min flow rates concerning ASHRAE Standards. At the 7 L/min flow rate of the working fluid, having a minimum temperature difference between the working fluid and absorber tube leads to better heat transfer. The increased volume concentration of MWCNT in the water enhances the surface area interaction between water and MWCNT nanoparticles. This results in maximum solar parabolic collector efficiency at 0.0317 vol% with a 7 L/min flow rate and 10–11% higher than the distilled water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.