Abstract

Wellbore integrity is one of the key performance criteria in the geological storage of CO 2. It is significant in any proposed storage site but may be critical to the suitability of depleted oil and gas reservoirs that may have 10’s to 1000’s of abandoned wells. Much previous work has focused on Portland cement which is the primary material used to seal wellbore systems. This work has emphasized the potential dissolution of Portland cement. However, an increasing number of field studies (e.g., Carey et al., 2007), experimental studies (e.g., Kutchko et al., 2006) and theoretical considerations indicate that the most significant leakage mechanism is likely to be flow of CO 2 along the casing–cement microannulus, cement–cement fractures, or the cement–caprock interface. In this study, we investigate the casing–cement microannulus through core-flood experiments. The experiments were conducted on a synthetic wellbore system consisting of a 5-cm diameter sample of cement that was cured with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow. The experiments were conducted at 40 ° C and 14 MPa pore pressure for 394 h. During the experiment, 6.2 l of a 50:50 mixture of supercritical CO 2 and 30,000 ppm NaCl-rich brine flowed through 10-cm of limestone before flowing through the 6-cm length cement–casing wellbore system. Approximately 59,000 pore volumes of fluid moved through the casing–cement grooves. Scanning electron microscopy revealed that the CO 2–brine mixture impacted both the casing and the cement. The Portland cement was carbonated to depths of 50–250 μ m by a diffusion-dominated process. There was very little evidence for mass loss or erosion of the Portland cement. By contrast, the steel casing reacted to form abundant precipitates of mixed calcium and iron carbonate that lined the channels and in one case almost completely filled a channel. The depth of steel corroded was estimated at 25– 30 μ m and was similar in value to results obtained with a simplified corrosion model. The experimental results were applied to field observations of carbonated wellbore cement by Carey et al. (2007) and Crow et al. (2009) to show that carbonation of the field samples was not accompanied by significant CO 2–brine flow at the casing–cement interface. The sensitivity of standard-grade steel casing to corrosion suggests that relatively straight-forward wireline logging of external casing corrosion could be used as a useful indicator of flow behind casing. These experiments also reinforce other studies that indicate rates of Portland cement deterioration are slow, even in the high-flux CO 2–brine experiments reported here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call