Abstract

We present an experimental study on the variation in wave impact location and present a mechanism for the development of free surface instabilities on the wave crest for repeatable plunging wave impacts on a vertical wall. The existence of free surface instabilities on an impacting wave is well known, but their characteristics and formation mechanism are relatively unknown. The development of the global wave shape is measured using a visualization camera, whereas the local wave shape is measured with an accurate stereo-planar laser-induced fluorescence technique. A repeatable wave is generated with negligible system variability. The global wave behavior resembles that of a plunging breaker, with a gas pocket cross-sectional area defined by an ellipse of constant aspect ratio. The variability of the local wave profile increases significantly as it approaches the wall. The impact location varies by ∼0.5% of the wave height or more than a typical pressure sensor diameter. Additionally, the wave tip accelerates to a velocity of 1.5gh0 compared to the global wave velocity of 1.2gh0. The difference in impact location and velocity can result in a pressure variation of ∼25%. A mechanism for instability development is observed as the wave tip becomes thinner and elongates when it approaches the wall. A flapping liquid sheet develops that accelerates the wave tip locally and this triggers a spanwise Rayleigh–Taylor instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call