Abstract

This study deals with turbulent oscillatory boundary-layer flows over a plane bed with a sudden spatial change in roughness. Two kinds of ‘change in the roughness’ were investigated: in one, the roughness changed from a smooth-wall roughness to a roughness equal to 4.8 mm, and in the other, it changed from a roughness equal to 0.35 mm to the same roughness as in the previous experiment (4.8 mm). The free-stream flow was a purely oscillating flow with sinusoidal velocity variation. Mean flow and turbulence properties were measured. The Reynolds number was 6 × 106 for the major part of the experiments, with a maximum velocity of approximately 2 m/s and the stroke of the motion about 6 m. The response of the boundary layer to the sudden change in roughness was found to occur over a transitional length of the flow. The bed shear stress over this transitional length attains a peak value over the bed section with the larger roughness. It was found that the amplification in the bed shear stress due to this peak could be up to 2.5 times its asymptotic value. Also, it was found that the turbulence is quantitatively different in the two half periods; a much stronger turbulence is experienced in the half period where the flow is towards the less-rough section. The present experiments further showed that a constant streaming occurs near the bed in the neighbourhood of the junction between the two bed sections. This streaming is directed towards the section with the larger roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.