Abstract

Aeroengine high-pressure turbine (HPT) is the key engine component. HPT blade must withstand high inlet temperatures and mechanical loads providing the necessary level of the efficiency. To achieve these objectives effective and complex blade cooling systems (internal convective and film cooling) are used in the HPT design. The objective of this project is to design and investigate the aeroengine HPT blade cooling system that is able to withstand the blade inlet gas temperature level of approx. 1900K but with the minimal cooling airflow amount. HPT blade of the aeroengine with unducted fan (UDF) was taken as a baseline design, namely, the monocrystal blade with a convective multipass system and the film cooling. Advanced HPT blade inter-wall cooling system was designed, investigated and compared with the typical baseline HPT blade. In the advanced HPT blade inter-wall cooling system special types and structure of cooling channels are used. Both types of cooling systems were investigated experimentally in the turbine rotor of the high temperature core engine. Measurements of turbine blades temperatures were performed using crystal temperature sensors (CTS). HPT blades with two competitive cooling systems incorporated with CTS (0,2–0,3 mm size) were installed in the turbine rotor of the core engine and tested on the engine Maximal rate. After tests and the engine disassembly CTSs were extracted and the characteristics of the CTS crystal lattice were transcribed in temperature values. Thermal state of both two competitive cooling systems was validated by experimental data. Numerical and experimental results obtained in the research of HPT blade cooling system are presented in the article. Aeroengine high pressure turbine blade cooling systems designs are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.