Abstract

An experimental study of wall static pressure distributions and mean velocity profiles along a duct and diffuser downstream of wall-jet injection was conducted over a range of diffuser total angles from 15 to 40° at injection to core flow mass flux ratios from 0 to 6. Pressure recovery in the diffuser increased with injection ratio and decreased with diffuser total angle. Peak velocities in the wall-jet decayed along the flow and the inner shear layer and outer mixing region grew in thickness along the flow. The inner layer was near similarity condition, but non-similar variations were found in the outer layer. Estimated wall shear stresses depended upon injection mass fluxes, downstream distance and diffuser total angle. Greater decay of peak velocity and larger friction coefficients were found in the diffuser than indicated by correlations from data for a wall-jet without a pressure gradient. At the largest diffuser total angle and the highest injection ratio flow reversal occurred in the core region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.