Abstract

Ultra-high molecular weight polyethylene (UHMWPE) Dyneema® SK-76 fibers are widely used in personnel protection systems. Transverse ballistic impact onto these fibers results in complex multiaxial deformation modes such as axial tension, axial compression, transverse compression, and transverse shear. Previous experimental studies on single fibers have shown a degradation of tensile failure strain due to the presence of such multi-axial deformation modes. In this work, we study the presence and effects of such multi-axial stress-states on Dyneema® SK-76 yarns via transverse loading experiments. Quasi-static transverse loading experiments are conducted on Dyneema® SK-76 single yarn at different starting angles (5°, 10°, 15°, and 25°) and via four different indenter geometries: round (radius of curvature (ROC) = 3.8 mm), 200-micron, 20-micron, and razor blade (ROC ~2 micron). Additionally, transverse loading experiments were also conducted for a 0.30 cal. fragment simulating projectile (FSP) and compared to other indenters. Experimental results show that for the round, 200-micron indenter, and FSP geometry the yarn fails in tension with no degradation in axial failure strain compared to the uniaxial tensile failure strain of SK-76 yarn (2.58%). Whereas for the 20-micron indenter and razor blade, fibers fail progressively in transverse shear followed by progressive strength degradation of the yarn. Strength degradation of yarn occurs at relatively low strains of 0.6–0.7% with eventual failure of the yarn at approximately ~1.8% and ~1.5% strain for the 20-micron indenter and razor blade, respectively. Breaking angles (range of 10°–30°) are observed to have little effect on the failure strain for all indenter geometries.

Highlights

  • Ultra-high molecular weight polyethylene (UHMWPE) is a linear flexible polymer [1] of C2 H4 molecules with a molecular weight of at least three million

  • Experimental results show that for the round, 200-micron indenter, and fragment simulating projectile (FSP) geometry the yarn fails in tension with no degradation in axial failure strain compared to the uniaxial tensile failure strain of SK-76 yarn (2.58%)

  • We investigate the behavior of Dyneema SK-76 under multi-axial loading via quasi-static transverse loading using different indenter geometries to create the foundation for a failure model

Read more

Summary

Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is a linear flexible polymer [1] of C2 H4 molecules with a molecular weight of at least three million. Compared to a melt crystallized block of molecules, the gel spinning and drawing process results in a long chain of parallel molecules in a crystal lattice This long chain of parallel molecules when oriented along the fiber axis gives UHMWPE (Dyneema) fibers their high tensile strength and stiffness [2]. They are mainly used in the form of textile fabrics and unidirectional composites in a wide range of applications like fishing ropes, tents, golf clubs, cut-resistant gloves, containment systems, and in soft and hard body armor for ballistic applications [3]. Ballistic impact onto personnel protection systems is a complex multiscale problem due to the multiscale hierarchy of the materials, anisotropic material behavior, projectile geometry, impact velocity and boundary conditions

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call