Abstract

An experimental investigation of vortex generators has been carried out in turbulent backward-facing step (BFS) flow. The Reynolds number, based on a freestream velocity U0 = 10 m/s and a step height h = 30 mm, was Reh = 2.0 × 104. Low-profile wedge-type vortex generators (VGs) were implemented on the horizontal surface upstream of the step. High-resolution planar particle image velocimetry (2D-2C PIV) was used to measure the separated shear layer, recirculation region and reattachment area downstream of the BFS in a single field of view. Besides, time-resolved tomographic particle image velocimetry (TR-Tomo-PIV) was also employed to measure the flow flied of the turbulent shear layer downstream of the BFS within a three-dimensional volume of 50 × 50 × 10 mm3 at a sampling frequency of 1 kHz. The flow control result shows that time-averaged reattachment length downstream of the BFS is reduced by 29.1 % due to the application of the VGs. Meanwhile, the Reynolds shear stress downstream of the VGs is considerably increased. Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) have been applied to the 3D velocity vector fields to analyze the complex vortex structures in the spatial and temporal approaches, respectively. A coherent bandwidth of Strouhal number 0.3 < Sth < 0.6 is found in the VG-induced vortices, and moreover, Λ-shaped three-dimensional vortex structures at Sth = 0.37 are revealed in the energy and dynamic approaches complementarily.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call