Abstract

Temperature measurements in downhole conditions (well thermometry) are widely used in monitoring the development of oil and gas reservoirs. With the use of thermometry many oilfield tasks are solved: determination of the working intervals, behind-the-casing flows, casing leakage etc. Variation of temperature in formation is caused by thermodynamic effects: Joule-Thomson and adiabatic. One of the main effects in determining the working intervals by downhole thermometry methods is the Joule-Thomson effect, which is associated with the Joule-Thomson coefficient, characterizing the composition of the fluid flowing from the perforated formation into the well. Therefore, it is necessary to know the value of Joule-Thomson coefficient for different fluids, especially it is important for quantitative interpretation of thermometry data. Currently, the Joule-Thomson coefficient is well studied for various pure fluids and gases, but practically not investigated for emulsions of different types. Meanwhile, the inflow of oil and water from the formation often leads to the formation of emulsion in the bottomhole zone of the formation. Therefore, experimental determination of Joule-Thomson coefficient for such systems and study of thermohydrodynamic processes during emulsion filtration is relevant. The paper presents the results of experimental studies of thermohydrodynamic processes during filtration of emulsion through a choke cell. The description of the experimental setup and the experimental procedure are given. The main design features of the throttle cell, approaches to reduce heat transfer during the movement of fluid through the throttle cell are discussed in detail. The data of experimental studies of temperature and pressure changes during filtration of type “oil in water” — oil dispersion in water and reverse emulsions of type “water in oil” — water dispersion in oil on the throttling cell are given. The paper also obtained estimates of the Joule-Thomson effect for liquids like water, oil and oil-water emulsions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call