Abstract

For the present article, a pulsating heat pipe (PHP) is fabricated and tested experimentally by bending a copper tube. The effects of working fluid, heat input, charging ratio, inclination angle, magnets location, and ferrofluid (magnetic nanofluid) volumetric concentration have been investigated on the thermal performance of this PHP. Experimental results show that using ferrofluid as a working fluid improves the thermal performance of the PHP significantly. Moreover, applying a magnetic field on a ferrofluidic PHP reduces its thermal resistance. By changing the inclination angle of the PHP from vertical mode to angles close to the horizontal mode, the present PHP has a constant and acceptable thermal performance. Reduction of the magnetic flux density at the evaporator decreases the PHP's thermal performance as well. Increasing the ferrofluid volumetric concentration in the experimental range enhances the thermal performance of the PHP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.