Abstract

We experimentally study the impacts of thermal effects and polarization crosstalk (PCT) on the performance of FBGs-based linearly polarized all-fiber laser. The mechanism that the thermal effects and PCT influence the performance of the laser is analyzed. Thermally-dependent reflection peaks of polarization maintaining (PM) fiber Bragg gratings are revealed to be the prime reason why temperature influences spectrum, output power, and polarization property of the laser. The PCT would also influence the performance of the laser seriously in the case of mismatched angle even with effectively overlapped spectrum. It is revealed experimentally that stable linearly polarized output can be obtained if a certain pair of aligned principal axes of PM FBGs is not only spectrally overlapped but also strictly angle matched. Further, we point out that accurate temperature control and careful angle match are essential for stable linearly polarized output and even possible power scaling further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call