Abstract
The influence of the large-scale vortical structures on the wall shear stress in a circular impinging jet is investigated experimentally for a Reynolds number of 1260. Time-resolved particle image velocimetry and polarographic measurements are performed simultaneously. It is found that the instantaneous wall shear stress is strongly dependent on the vortex dynamics, particularly for different parts of the transverse vortex. The influence of the vortex ring, the secondary and tertiary vortices on the ejection/sweep process near the wall is the main mechanism involved in the wall shear stress variation. In the region of the boundary layer separation, the wall shear stress amplitude increases just upstream of the separation and dramatically decreases in the recirculation zone downstream from the separation. The interaction between primary and secondary structures and their pairing process with the tertiary structure affects the sweep/ejection process near the wall and subsequently the wall shear stress variation. A comparison between the Finite Time Lyapunov Exponent (FTLE) method and the phase average technique is performed. It is shown that both methods describe the flow dynamics in the impinging region of the vortex ring. However, the FTLE method is more suitable for describing the unsteady separation of the boundary layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.