Abstract

The spiral vortex breakdown has been experimentally studied in the flow field generated by a lean premixing prevaporizing (LPP) combustor model. The vortex breakdown structures are characterized by a solid-body rotation. Hence, phase-locked laser Doppler velocimeter measurements, performed in a meridional plane, have allowed reconstruction of the periodic velocity and Reynolds stress fields within a time period and in a relative cylindrical frame of reference. Then, the turbulent kinetic energy (TKE) production term has been computed. The velocity distribution analysis indicates that a spiral vortex core wraps around an inner reverse flow zone. Both are characterized by a precessing motion. Then, the main contributions to the TKE production have been identified together with their spatial locations. Their distribution indicates that the maxima are placed in two regions: one located between the inner reverse flow and the spiral vortex and the second between the spiral vortex core and the external nearly quiescent fluid. In the latter, the TKE production term distributions have the features of a Kelvin–Helmholtz-like instability. In the former, the TKE production seems to be related to a Kelvin–Helmholtz-like instability only at the interface between the bubble and the spiral vortex core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.