Abstract

ABSTRACTThis investigation was motivated by the need for performance improvement of pneumatic tires in icy conditions. Under normal operation, the pneumatic tire is the only force-transmitting component between the terrain and the vehicle. Therefore, it is critical to grasp the understanding of the contact mechanics at the contact patch under various surfaces and operating conditions. This article aims to enhance the understanding of the tire-ice contact interaction through experimental studies of pneumatic tires traversing over smooth ice. An experimental design has been formulated that provides insight into the effect of operational parameters, specifically general tire tread type, slip ratio, normal load, inflation pressure, ice surface temperature, and traction performance. The temperature distribution in the contact patch is recorded using a novel method based on thermocouples embedded in the contact patch. The drawbar pull is also measured at different conditions of normal load, inflation pressure, and ice temperatures. The measurements were conducted using the Terramechanics Rig at the Advanced Vehicle Dynamics Laboratory. This indoor single-wheel equipment allows repeatable testing under well-controlled conditions. The data measured indicates that, with the appropriate tread design, the wheel is able to provide a higher drawbar pull on smooth ice. With an increase in ice surface temperature, a wet film is observed, which ultimately leads to a significant decrease in traction performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call