Abstract

The three-point bending fatigue properties of carbon fiber epoxy matrix composite laminates were compared for fatigue loading stress levels of 75, 80 and 85%, and fatigue loading frequencies of 10, 15 and 20 Hz, respectively. The experimental results showed that the bending fatigue life of the composites obviously decreased with the increase of the fatigue loading stress level or the loading frequency. The fatigue damage accumulation process could be divided into three distinct stages according to the accumulation rate: fast, slow and then fast. When the loading stress level was increased from 75 to 85%, the duration of the third stage decreased from 40 to 10% of the overall fatigue life. When the loading frequency was increased from 10 to 20 Hz, the duration of the third stage increased from 20 to 40% of the overall fatigue life. Matrix cracking, fiber breaking, interface debonding and delamination were identified as the main three-point bending fatigue damage modes of the carbon fiber composite material, and the stress level and the loading frequency were found to significantly influence the fatigue failure properties of the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.