Abstract
Diel temperature fluctuations have been used to quantify vertical water flow through saturated sediments with 1‐D analytical heat models. The underlying transport equation relies on assumptions that could be violated using field temperature records. To test the capability of this method a hydraulic laboratory experiment was designed. A mass of fully water‐saturated homogeneous sand was exposed to 19 different uniform pressure gradients inducing steady state Darcy velocities 0 < q < 25 m d−1. An areal heating grid generated steady sinusoidal thermal forcing. Multipoint sediment temperature responses demonstrated increasing spatial variability for increasing velocities. This introduced horizontal temperature gradients. Velocities calculated from heat tracing were compared to velocities independently obtained from solute slugs. Heat‐ and solute‐derived velocities agreed for q < 3 m d−1, but heat‐derived velocities were consistently larger at higher velocities. Temperature amplitude‐ and phase‐derived velocities revealed significant scatter when compared to solute velocities. This scatter reduced when amplitude‐ and phase‐derived velocities were compared for each sensor pair. The variability in heat‐derived velocities therefore represents a spatially variable flow field in the sand. However, amplitude‐ and phase‐derived velocities deviated from a 1:1 relationship at higher velocities. This can partly be explained by longitudinal thermal dispersivity, and partly by enhanced thermal spreading due to horizontal temperature gradients originating from nonuniform flow. This is surprising given the homogeneous sand and transition zone transport conditions (Pet < 0.7). These findings have implications for the quantification of velocities from field records because field conditions are likely more heterogeneous, which would exacerbate the effects found in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.