Abstract

In chemically enhanced oil recovery (EOR), surfactants are conventionally used to lower the interfacial tension (IFT) at the water-oil interface, alter the rock wettability, and help in the emulsification of trapped oil after primary and secondary modes of recovery. A mixture of surfactants is usually more effective than a single surfactant with enhanced surface or interfacial properties. The primary objective of this study is to examine the synergistic effects of two nonionic surfactants (Tergitol 15-S-12 and PEG 600) on surface properties, such as surface tension, IFT, and wettability alteration, in the context of EOR. The optimum composition of the surfactant mixture was obtained by surface tension measurement, and it has been found that the Tergitol 15-S-12 and PEG 600 mixture shows better synergistic effect with a minimum surface tension value of 30.3 mN/m at 225 ppm concentration of Tergitol 15-S-12 and 1 wt % of PEG 600. The surfactant mixture with optimum composition shows an ultra-low IFT of 0.672 mN/m at optimum salinity. The wettability alteration study was conducted in a goniometer by observing the change of the contact angle of an oil-wet sandstone rock in the presence of the formulated chemical slugs at different concentrations, and the results show a shift in the wettability of rock from the oil-wet to the water-wet region. The wettability alteration behavior of oil-wet rock is established using X-ray diffraction analysis of sandstone rock and zeta potential measurements of the chemical slugs. The efficacy of the optimized chemical slug for EOR was checked by a core flooding experiment, and an additional recovery of 17.73% of the original oil in place was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.