Abstract
We investigated by time-of-flight technique the slow light and superluminal effects in high-quality three-dimensional (3D) colloidal photonic crystals (PCs) with opal structure, fabricated by pressure controlled isothermal vertical deposition technique. They produce high transmission in the pass bands and sharp band edges due to low volume density of defects and dislocations. The variation of the group velocity across the short-wavelength band edge was measured. Group velocity as low as 0.43c was observed near the band edge while group velocity as high as 1.34c was found in the band gap. We have also simulated the transportation of ultrashort pulses through 3D PCs and compared the simulation results with the experimental ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.