Abstract

The work is devoted to the registration and the study of the properties of cylindrical shock waves generated in the fast discharge (dI/dt ∼ 1012 A/s) inside the ceramic tube (Al2O3) filled by argon at pressures of 100 and 300 Pa. The shock wave appears at the inner wall of the insulator and moves to the discharge axis with a velocity of about (3−4) × 106 cm/s with subsequent cumulation. The plasma behind the front is heated enough to produce radiation in the vacuum ultraviolet (VUV) region, which makes it possible to study its structure by means of a pinhole camera with a microchannel plate detector. The time resolution of the registration system was 10 ns. The analysis of VUV spectra of the plasma shows that the electron temperature behind the shock wave front is about several eV; after the moment of cumulation, its temperature increases to 20–30 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call