Abstract

This study explores enhanced oil recovery (EOR) strategies, with a focus on carbonate reservoirs constituting over 60% of global oil discoveries. While “smart water” injection proves effective in EOR for carbonate reservoirs, offshore application challenges arise due to impractical volumes for injection. To address this, we propose a novel continuous injection approach, systematically investigating it on a laboratory scale using the Iranian offshore reservoir, Sivand. Thirty-six contact angle tests and twelve flooding experiments are meticulously conducted, with key ions, potassium, and sulfate, playing pivotal roles. Optimal wettability alteration is observed at 4 times potassium ion concentration in 0–2 times sulfate concentrations, driven by ionic strength and charge interactions. Conversely, at 3–5 times sulfate concentrations, the optimal contact angle shifts to 2 times potassium ion concentration, suggesting a mechanism change linked to increasing sulfate ion ionicity. A significant wettability alteration, evidenced by a 132.8° decrease, occurs in seawater with a twofold concentration of potassium ions and a fivefold concentration of sulfate ions. Micromodel experiments introduce an innovative alternation of smart water and seawater injections. The first scenario, smart water followed by seawater injection, reveals negligible post-seawater injection oil recovery changes. In contrast, the second scenario yields a maximum recovery of 7.9%. The first scenario, however, boasts superior overall sweep efficacy, reaching approximately 43%. This research expands understanding of smart water and seawater injection in EOR, presenting a viable solution for optimizing offshore carbonate reservoir recovery. The insights contribute to evolving EOR methodologies, emphasizing tailored strategies for varying reservoir conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call