Abstract

Intensive studies regarding the investigation of seismic performance of reinforced concrete (R/C) frames which are infilled with brick masonry walls have been carried out by several researchers within the last three-decades. According to authors’ field and experimentally experiences conclude that the unreinforced brick masonry infills significantly contributes to increase the seismic performance of the R/C frame structure. Unfortunately, the presence of brick masonry infill walls causes several undesirable effects such as short column, soft-storey, torsion and out of plane collapse. In this study, a strengthening technique for the brick masonry infills were experimentally investigated to improve the seismic performance of the R/C frame structures. For this purpose, four experimental specimens have been prepared, i.e. one of bare R/C frame (BF), one of R/C frame infilled with unreinforced brick-masonry wall (IFUM) and two of R/C frames were infilled with reinforced brick-masonry wall (IFRM-1 and IFRM-2). The bare frame and R/C frame infilled with unreinforced brick-masonry wall represents the typical R/C buildings’ construction in Indonesia assuming the brick-masonry wall as the non-structural elements. The brick-masonry wall infills in specimens IFRM-1 and IFRM-2 were strengthened by using embedded ϕ4 plain steel bar on their diagonal and center of brick-masonry wall, respectively. All specimens were laterally pushed-over. The lateral loading and its lateral displacement, failure mechanism and their crack pattern were recorded during experimental works. Comparison of the experimental results of these four specimens conclude that the strengthening of the brick-masonry infills wall gave the significantly increasing of the seismic performance of the R/C frame. The seismic performance was evaluated based on the lateral strength of the R/C specimen. The embedded plain steel bar on brick-masonry also reduces the diagonal crack on the brick-masonry wall. It seems that the presence of the embedded plain bar may help reduce the vulnerability of the brick-masonry infill.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call