Abstract

Municipal Solid Waste Incineration (MSWI) bottom ashes are irregular granular media because of their origin and are very heterogeneous with a large quantity of angular particles of different chemical species. MSWI bottom ash is a renewable granular resource alternative to the use of non-renewable standard granular materials. Beneficial use of these alternative granular materials mainly lies in road engineering. However, the studies about mechanical properties of such granular media still remain little developed, those being mainly based on empirical considerations. In this paper, a study of mechanical behaviour of a MSWI bottom ash under axisymmetric triaxial loadings conditions is presented. Samples are initially dense after Proctor compaction, are saturated and tested in drained conditions, under different effective confining pressures ranging from 100 to 600 kPa. The evolutions of volumetric strains show an initial contracting phase followed by a dilatancy phase, more pronounced when the confining pressure is low. The stresses ratios at the characteristic state and at the critical state appear in good agreement and with a null rate of volume variation. The angles of internal friction and dilatancy of the studied MSWI bottom ash are estimated and are similar to conventional granular materials used especially in road engineering. The dilatancy law of Rowe is well experimentally verified on this irregular recycled granular material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call