Abstract

The aim of this work is to study the influence of weave structure on the crack growth behavior of thick E-glass/polyester woven fabric composites laminates. Two different types of laminates were fabricated: (i) balanced: plain weave (taffetas T)/chopped strand mat weave (M) [T/M]6 and (ii) unbalanced: 4-hardness satin weave (S)/chopped strand mat weave [S/M]7. In order to accurately predict damage criticality in such structures, mixed mode fracture toughness data is required. So, the experiments were conducted using standards delamination tests under mixed mode loading and pure mode loading. These tests were carried out in mode II using End Load Split (ELS) tests and in mixed-mode I+II by Mixed Mode Flexure (MMF) tests under static conditions. The test methodology used for the experiments will be presented. The experimental results have been expressed in terms of total strain energy release rate and R-curves. The fracture toughness results show that the T/M interface is more resistant to delamination than the S/M interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.