Abstract

Chemisorption phenomena can affect fission products (FP) retention in a nuclear reactor vessel during a severe accident (SA). Detailed information on the FP chemisorbed deposits, especially for Cs, are important for a rational decommissioning of the reactor following a SA, as for the Fukushima Daiichi Power Station. Moreover the retention of Cs will influence the source term assessment and thus improved models for this phenomenon are needed in SA codes. This paper describes the influence on Cs chemisorption of molybdenum contained in stainless steel (SS) type 316. In our experiments it was observed that Cs-Mo deposits (CsFe(MoO4)3, Cs2MoO4) were formed together with CsFeSiO4, which is the predominant compound formed by chemisorption. The Cs-Mo deposits were found to revaporize from the SS sample at 1000 °C, and thus could contribute to the source term. On the other hand, CsFeSiO4 will be probably retained in the reactor during a SA due to its stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call