Abstract

The influence of rock weathering caused by freezing–thawing on stone cultural relics cannot be ignored. For immovable stone cultural relics, different parts under different environmental conditions will be under different freeze–thaw actions and suffer different degrees of damage. In this paper, three typical freeze–thaw cycle tests of sandstone are designed, namely immersion test, capillary action test, and periodic saturation test. The macroscopic and microscopic morphologies of rock samples under different freeze–thaw cycles were analyzed. Weathering indicators such as porosity, water content, wave velocity, and surface hardness were tested, as well as uniaxial compressive strength. The variation law of weathering index and uniaxial compressive strength under different freezing–thawing cycles was obtained, and the quantitative relationship between each index parameter was further analyzed. The results show that under different freezing–thawing conditions, the apparent morphology of rock samples is different, and the trend of weathering indexes is similar, but the rate of change is different. The water content of rock has a great influence on the test results of wave velocity but has little influence on the surface hardness. The function relationship between weathering index and compressive strength under different freezing–thawing modes is similar, but the fitting parameters are different. Finally, the strength and wave velocity damage factors were used to quantitatively evaluate the degree of rock weathering. The results show that the immersion freeze–thaw damage is the highest, the periodic saturated freeze–thaw damage is the second highest, and the capillary freeze–thaw damage is the least highest. This is consistent with the field observation results. The conclusion of this paper can provide reference for the detection of stone cultural relics and provides a scientific basis for the anti-weathering protection of stone cultural relics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.