Abstract

The behavior of small disturbances in a 3-D laminar boundary layer on a yawed cylinder was experimentally investigated. This setup simulates the flow around the leading edge of swept wings. Since multiple instability modes appear near the attachment-line region, a point-source disturbance was artificially introduced to separate these modes. Amplitude and phase distributions of the disturbances originating from the point source were measured using a hotwire probe near the attachment-line flow to test existing theoretical predictions. Hotwire measurements show that two instability modes definitely coexist and overlap in the middle portion of the wedge-shaped region developing downstream of the point source. Decomposition by 2-D fast Fourier transform (FFT) analysis enables us to separate one oblique wave from the other. One of the oblique waves belongs to the cross-flow instability mode, which travels to the attachment line and grows even at Reynolds numbers that are slightly lower than the critical Reynolds number for the attachment-line instability. The origin of the other mode is not identifiable, because it has peculiar characteristics different from both the streamline-curvature instability mode and the cross-flow instability mode. This mode decays in the downstream direction for all frequencies examined. By investigating the spatial characteristics of the small disturbance, the critical Reynolds number for cross-flow instability was successfully determined in the off-attachment-line region. The value, Rc = 543, was lower than the critical Reynolds number of Rc = 583 for the attachment-line flow. Furthermore, the critical frequency and wavenumber were in good agreement with existing predictions based on linear stability theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call