Abstract

In modern industrial gas turbines swirling flow is widely used for stabilizing flames at the transition from the burner to the combustor. In premixed combustion systems using highly reactive fuels, flashback due to combustion induced vortex breakdown (CIVB) has been observed frequently when swirl was present. This paper focuses on the effect of low swirl intensities on the flashback propensity and the predominant flashback mechanisms in a hydrogen-air tube burner. An existing test rig with a vertical quartz tube and a generic swirl generator has been used. At the tube exit the flame was stabilized in the free atmosphere. The turbulent flashback limits were measured for hydrogen-air mixtures at atmospheric conditions over a broad range of equivalence ratios for both non-swirling and swirling flow. The upstream flame propagation during flashback was observed through the OH*-chemiluminescence captured by two synchronized intensified high-speed cameras in a 90° arrangement, both looking at the flame from the side. In addition to that, a high-speed particle image velocimetry (PIV) system was used to insert a horizontal laser sheet into the vertical tube in order to investigate the propagation path of the leading flame tip through a time series of Mie-scattering images from the bottom. As expected, it turned out that the flame always flashes back along the wall boundary layer for non-swirling flow. For swirling flow it could be shown that again only boundary layer flashback takes place for equivalence ratios lower than ϕ≈0.75. In this rather lean region, the resistance against flashback is improved compared to non-swirling flow due to higher wall velocity gradients. For higher equivalence ratios, flashback is initiated through CIVB. That is, the flame enters the tube on the burner centerline until its tail gets in touch with the burner walls. Subsequently, there is a shift in flashback mechanism and the flame propagates further upstream along the wall boundary layer. For the given setup and these near-stoichiometric mixture compositions, this resulted in a significantly increased flashback propensity when compared with non-swirling flames. The present studies showed that imposing low swirl upon the burner flow can improve the resistance against boundary layer flashback for low and moderate equivalence ratios, whereas the change to the CIVB mechanism deteriorates the performance for high equivalence ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call