Abstract
Thermoelectric generator systems are often evaluated and studied in open circuit and close circuit modes. In the open circuit case, minimum heat flux passes across the thermoelectric module and the module does not have any thermal losses. Moreover, in the close circuit system, the external consumer is connected to the module and higher heat is pumped from its hot side to cold side. Hence, investigating the effect of external load resistance as the consumer connected to the module on its response is a significant issue in thermoelectric systems. In this study, to evaluate the effect of various consumers (4, 8, 10, 15, 20 and 30 Ω) over the module on discharge time, output voltage and temperature on both sides of the module, thermoelectric systems lacking and containing phase change material as the useful means for energy storage and thermal management of thermoelectric system were designed and exposed to constant heat loads. Results of this study show that the power consumption of the internal resistance of the module (connected to the consumer) led to an increase in the temperature of both sides of the module compared to open circuit systems. Therefore, the thermal balance and temperature distribution over the module changes and more affected. The maximum output power and discharge time were obtained at the external resistance of 4 Ω (close to the average internal resistance of the module) in the studied systems. The phase change material prevented excessive temperature on the hot side during the charging process and provided proper thermal management to enhance voltage generation and discharge time. The thermoelectric generator is an effective technology in starting consumers with low resistance, such as light bulbs and remote controls.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.