Abstract

Abstract Aiming at resolving the problem of measuring probe blockage effect in the performance experiments of high loaded axial flow compressors, an experimental investigation of the probe support disturbance effect on the compressor cascade flow field was conducted on a transonic plane cascade test facility. The influence characteristics of the probe support tail structure on the cascade downstream flow field under different operation conditions were revealed through the detailed analysis of the test data. The results show that the aerodynamic coupling effect between the upstream probe support wake and the downstream cascade flow field is very intense. Some factors, i. e. inlet Mach number, probe support tail structure, circumferential installing position of probe, and axial distance from the probe support trailing edge to the downstream cascade, are found to have the most impact on the probe disturbance intensity. Under high speed inlet flow condition, changing probe support tail structure can’t inhibit probe support disturbance intensity effectively. Whereas under low speed inlet flow condition, compared with the cylindrical probe, the elliptic probe can inhibit probe support wake loss and reduce disturbance effects on the downstream cascade flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.