Abstract

It is effective to recover waste heat to reduce primary energy consumption. From this point of view, we proposed and examined a new idea of heat transportation using ammonia–water as the working fluid in the system named the Solution Transportation Absorption chiller (STA). As waste heat sources are not necessarily located close to areas of heat demand, conventionally, absorption chillers are located on heat source side and produce chilled water that is transported to heat demand side through pipelines with an insulation. In contrast, the proposed system STA divides an absorption chiller into two parts. The generator and the condenser are located on heat source side while the evaporator and the absorber are on heat demand side. Both the conventional system and STA system satisfy the same boundary condition of heat recovery and heat supply to the demand side, STA can work for transferring thermal energy as the conventional system does even though the temperature of the media is ambient without an insulation. Our previous studies of the STA were based on the experimental investigation with the STA facility where the cooling power was 90[Formula: see text]kW (25.6 refrigeration ton) at the generator temperature 120[Formula: see text]C from 0[Formula: see text]m (normal absorption chiller) to 1000[Formula: see text]m. Thus, the Coefficient of Performance (COP) of STA was found to have almost the same value of 0.65 with conventional absorption chillers without depending on the transportation distances. The objective of this study is to examine the effect of generator temperature from 100[Formula: see text]C to 120[Formula: see text]C on the performance of solution transportation of ammonia–water solution, because the generator temperature is directly linked to the waste heat temperature, so its effect needs to be investigated. The experimental facility tested the performance with 0[Formula: see text]m (normal absorption chiller), 200[Formula: see text]m and 500[Formula: see text]m distance. The results indicate that the effect of the generator temperature and solution transportation distances showed no significant on the COP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.