Abstract
An extensive experimental investigation was conducted on an oscillating NACA 23012 airfoil to study the flow structures and the consequent performances in dynamic stall conditions. The testing activity involved two different measurement techniques: fast unsteady pressure measurements and particle image velocimetry. The analysis of the experimental data set made possible to achieve a deep insight in the mechanism of the dynamic stall phenomena for the NACA 23012 airfoil in the different dynamic stall regimes. In particular, the flow velocity field measured on the airfoil upper surface described in detail the mechanism of the formation, migration and shedding of strong vortical structures characteristic of the deep dynamic stall. In addition, Gurney flap effects were investigated. The experimental results showed that it would be advantageous to deploy active Gurney flaps to improve helicopter rotor blade performances. The whole set of experimental results can be considered as a reference to validate computational fluid dynamics tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.