Abstract

In this study, the dynamic stress–strain response of graphite-epoxy composite laminates is investigated. The laminates are interposed in a section of a split Hopkinson apparatus. A quasi-rectangular wave is generated at one end of the incident bar by striking it with another bar of known length. This bar is accelerated using a compressed air gun. Approximate average stresses and strains can be obtained by measuring the incident, reflected and transmitted waves in the split bar. The dynamic behavior is evaluated for a range of impact velocities. The dependence of the response on impact velocity is analyzed and discussed. Three different specimen thicknesses have been used. These are obtained by increasing the repetition factor of a base stacking sequence: (+45°, −45°, 0°, 90°). This process is called sublaminate scaling; it is preferred to ply scaling since it has been shown that the accumulation of layers of the same orientation decreases the failure load to such an extent that residual stresses may crack the specimen before any external load is applied. The laminates considered are: (+45°, −45°, 0°, 90°) ns , n=2,3,4. The scale effects observed in the experimental response are analyzed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.