Abstract

Our purpose in this study was to investigate the image quality and absorbed dose characteristics of a digital mammography imaging system with a CsI scintillator, and to identify an optimal x-ray tube voltage for imaging simulated masses in an average size breast with 50% glandularity. Images were taken of an ACR accreditation phantom using a LORAD digital mammography system with a Mo target and a Mo filter. In one experiment, exposures were performed at 80 mAs with x-ray tube voltages varying between 24 and 34 kVp. In a second experiment, the x-ray tube voltage was kept constant at 28 kVp and the technique factor was varied between 5 and 500 mAs. The average glandular dose at each x-ray tube voltage was determined from measurements of entrance skin exposure and x-ray beam half-value layer. Image contrast was measured as the fractional digital signal intensity difference for the image of a 4 mm thick acrylic disk. Image noise was obtained from the standard deviation in a uniformly exposed region of interest expressed as a fraction of the background intensity. The measured digital signal intensity was proportional to the mAs and to the kVp5.8. Image contrast was independent of mAs, and dropped by 21% when the x-ray tube voltage increased from 24 to 34 kVp. At a constant x-ray tube voltage, image noise was shown to be approximately proportional to (mAs)(-05), which permits the image contrast to noise ratio (CNR) to be modified by changing the mAs. At 80 mAs, increasing the x-ray tube voltage from 24 to 34 kVp increased the CNR by 78%, and increased the average glandular dose by 285%. At a constant lesion CNR, the lowest average glandular dose value occurred at 27.3 kVp. Increasing or decreasing the x-ray tube voltage by 2.3 kVp from the optimum kVp increased the average glandular dose values by 5%. These results show that imaging simulated masses in a 4.2 cm compressed breast at approximately 27 kVp with a Mo/Mo target/filter results in the lowest average glandular dose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call