Abstract
Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. In Part I it was shown that an one-sided diffuser clearance is able to contribute to an increase in flow range, stall margin, pressure ratio, and efficiency. In order to reveal the relevant flow phenomena, in Part II the results of detailed measurements of the pressure distribution at diffuser exit and particle image velocimetry (PIV) measurements inside the diffuser channel performed at three clearance configurations and three diffuser angles at a fixed radial gap are discussed. It was found that, for defined diffuser configurations, the clearance flow amplifies the diffuser throat vortex capable to reduce the loading of the highly loaded vane pressure side and to support a more homogenous diffuser flow. It turned out that the co-action of the geometry parameter diffuser vane angle and diffuser clearance height is of particular importance. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.